The new flame proof ULTIMA film capacitor range from Deki provides superior safety in switch/socket type fan regulators. Instead of catching fire or bursting and oozing film, these capacitors fail safely.

If you want to prevent the hazard of an accident with the switch/socket type fan regulator that you manufacture, call Shariq on 09313808478 or email shariq@dekielectronics.com.

Go for safety today. Go for the ULTIMA range of fan regulator capacitors from Deki Electronics.

Deki Electronics Ltd, B-20 Sector 58, NOIDA 201 301, India.
www.dekielectronics.com
FAN REGULATOR
A Fan Regulator, as the name suggests, regulates or controls the speed of the fan motor. Before dealing with the fan regulator, a brief discussion about the fan motor is necessary, as the main purpose of the regulator is to control the speed of the fan motor.

FAN MOTOR
The motor used in a household ceiling fan is a 1φ squirrel cage type induction motor with the properties and specifications of a normal 1φ motor.

CONSTRUCTIONAL FEATURES
A 1φ induction motor employs two windings for its operation as it is not a self-starting version of an induction motor (polyphase motor). The two windings are main/running winding and starting/auxiliary winding. The windings are placed on a stationary member called stator, that has stampings and slots to hold the windings.

The rotor is the rotating member, of a squirrel cage type, on which the fan blades are mounted.

Note: It also incorporates a capacitor in series with a starting winding.

PRINCIPLE OF OPERATION
A ceiling fan motor is based on Faraday’s Law of Electro-magnetic Induction according to which whenever a conductor is placed in a rotating magnetic field, an electro-magnetic force (emf) is induced. The frequency of the induced emf is the same as the supply frequency and its magnitude is proportional to the relative motion between the flux and the conductor. The direction of the induced emf is given by Fleming’s Right Hand Rule.

WORKING
In order to make a ceiling fan self-starting, a starting or auxiliary winding is used, placed electrically 90° apart from the main winding, with a running capacitor in series with the starting winding. Both the windings are connected in parallel to each other. Winding supply across the terminal as shown in the figure.

PURPOSE OF RUNNING CAPACITOR
A capacitor is incorporated in circuit so that \(I_s \) and \(I_r \) are 90° apart in phase from each other (ideal case) so that a revolving or rotating magnetizing flux can be set up.

STARTING OF FAN
When the supply is given a rotating flux is set up in the stator which is revolving with synchronous speed \(N_s \).

\[
N_s = \frac{(120 \times f)}{p}
\]

where

- \(f \) = supply frequency
- \(p \) = number of poles

This flux induces a voltage in the rotor due to electromagnetic induction. As this rotor is initially stationary, torque is developed which rotates the rotor and rotor speed starts to build up. The direction of rotation is the same as that of the rotating flux. The torque developed is given by

\[
T \propto S V^2
\]

where

- \(S = \text{slip speed} \)

Now, this torque is proportional to square of voltage.

\[
\text{Speed} \propto \text{Torque} \propto V^2
\]

Hence, by controlling the voltage supply across the fan its speed can be varied.

TYPES OF FAN REGULATORS
Currently Fan Regulators are of these four types:
- Resistive regulator
- Phase angle controlled regulator
- Inductive regulator
- Capacitive regulator (latest).

RESISTIVE REGULATOR
This is the most common type in household ceiling fans. It works by providing different taps on a wire wound resistor connected in series with the fan.

Advantages
- Cost-effective.

Disadvantages
- Considerable power loss as heat, especially at lower speeds, making it inefficient
- Bulky, lack of aesthetic appeal
- Very high energy consumption.
PHASE ANGLE CONTROLLED REGULATOR
Phase angle controlled regulators employ active devices such as DIAC and TRIAC. The basic principle is to change the firing angle of the TRIAC in order to change the voltage across the fan.

Advantages
- Continuous speed control
- Low power consumption as compared to resistive type regulators.

Disadvantages
- Speed control not linear
- Expensive as compared to resistive fan regulators.
- Produces humming sound that is disturbing
- Higher failure rate as active devices are susceptible to power supply transients and interference
- Causes EMI/RFI interference creating disturbances in TV and radio sets.

INDUCTIVE TYPE FAN REGULATOR
An inductive type fan regulator has a tapping on the winding of the transformer and the inductive reactance is varied to achieve variation in speed.

Advantages
- Low heat power dissipation.

Disadvantages
- Low power factor.
- Quite costly.
- Heavy and bulky.

CAPACITIVE TYPE FAN REGULATOR

The main purpose here is to control the voltage across the capacitor. As we know, the voltage across the capacitor is given by the formula \(V_c = Q/C \) where \(Q \) is the charge across the capacitor and \(C \) is the capacitance.

According to the formula above, \(C \propto 1/V_c \).
As \(C \) increases, \(V_c \) decreases. Thus, the voltage across the fan increases. Therefore, the speed increases. So, by increasing the value of capacitor, the speed of the fan can be increased. Thus, by employing suitable combinations of capacitors a fan’s speed can be regulated.

Purpose of \(R_s \) and \(R_p \)
\(R_s \) is a series resistance which is used in series with the capacitor in order to limit the current flowing to the capacitor to a safe value.
\(R_p \) is a parallel resistance which serves as a discharging path for the capacitor for each supply cycle.

NOTE: Speed decreases with the increase in the number of turns of the inductance coil winding.

DEKI CAPACITOR GUIDE

Fan Regulators

Basic Principle

DISADVANTAGES

- High energy consumption.
- Considerable power loss as heat, especially at lower speeds.
- Cost-effective.
- Low power consumption as compared to resistive type regulators.

ADVANTAGES

- Produces no audible noise.
- Expensive as compared to resistive fan regulators.
- Speed control not linear
- Causes EMI/RFI interference creating disturbances in TV and radio sets.

INDUCTIVE TYPE FAN REGULATOR

An inductive type fan regulator has a tapping on the winding of the transformer and the inductive reactance is varied to achieve variation in speed.

Advantages
- Low heat power dissipation.

Disadvantages
- Low power factor.
- Quite costly.
- Heavy and bulky.
How to calculate the value of the capacitors

Applying KVL (Kirchof’s voltage law), the calculated value of \(X_c \) is given by

\[
(V_S - V_F) / V_S = X_c
\]

where, \(V_S \) = supply voltage
\(V_F \) = voltage across the fan
\(Z_F \) = impedance of the fan,

and, the value of capacitance can be calculated by

\[
C = 1 / (2 \pi f X_c)
\]

where, \(f \) is the supply frequency.

Advantages
- Energy efficient
- No humming sound during operations
- Speed is linear
- High reliability as compared to electronic type regulator.

Disadvantages
- Because of size only marginal design is possible for film capacitor
- Fire hazard is, hence, the only failure mode.

Let us examine the ISI standards for fan regulators as per IS:374-1979:
- Regulators including electronic type of speed regulators shall be capable of reducing the speed of the fan at least 50 per cent of the full speed at the test voltage.
- Fans shall be capable of running on all the running positions of the regulator at the rated voltage or within the whole rated voltage range.
- Shall have an ‘OFF’ position preferably next to the lowest speed contact.
- Shall be provided with not less than five running positions except in case of continuously variable speed regulators.
- The speed difference at any running position shall not deviate by more than +/- 50 % from the ideal speed difference calculated on the basis of maximum and minimum speeds divided by the number of steps.
 - Max speed of the fan: 400 rpm
 - Min speed of the fan: 200 rpm
 - Regulator steps: 5
 - Ideal speed difference = 200/5 = 40 rpm
- Speed difference between any two running positions should be between 20 and 60 rpm.
- Electronic type regulators shall be provided with radio and television interference suppressing devices.
- The voltage drop across the electronic type regulators at the maximum speed position shall not exceed 2% of the rated voltage of the fan.

EXPERIMENTAL STUDY

Fans from different manufacturers are tested on a standard regulator with combinations of 2.2, 1.0 and 3.1 \(\mu F \).

Now,
- At speed 1 = 2.2 \(\mu F \)
- At speed 2 = 3.1 \(\mu F \)
- At speed 3 = 4.1 \(\mu F \)
- At speed 4 = 5.3 \(\mu F \)
- At speed 5 = no capacitor

For,
- Fan A, maximum RPM = 320
- Fan B, maximum RPM = 422
- Fan C, maximum RPM = 380

Configurations at various switch positions

Position 1

- At this position, capacitor in the circuit = 2.2 \(\mu F \).

Position 2

- At this position, capacitor in the circuit = 3.1 \(\mu F \).

Position 3

- At this position, capacitor in the circuit = 3.1 + 1 = 4.1 \(\mu F \).
How to calculate the value of the capacitors

Applying KVL (Kirchof’s voltage law), the calculated value of X is given by

\[
\frac{V_S \times Z_F - V_F \times Z_F}{V_S} = X
\]

where, \(V_S\) = supply voltage
\(V_F\) = voltage across the fan
\(Z_F\) = impedance of the fan,

and, the value of capacitance can be calculated by

\[
C = \frac{1}{2 \times f \times X_C}
\]

where, \(f\) is the supply frequency.

Advantages

- Energy efficient
- No humming sound during operations
- Speed is linear
- High reliability as compared to electronic type regulator.

Disadvantages

- Because of size only marginal design is possible for film capacitor
- Fire hazard is, hence, the only failure mode.

Let us examine the ISI standards for fan regulators as per IS:374-1979:

- Regulators including electronic type of speed regulators shall be capable of reducing the speed of the fan at least 50 per cent of the full speed at the test voltage.
- Fans shall be capable of running on all the running positions of the regulator at the rated voltage or within the whole rated voltage range.
- Shall have an ‘OFF’ position preferably next to the lowest speed contact.
- Shall be provided with not less than five running positions except in case of continuously variable speed regulators.
- The speed difference at any running position shall not deviate by more than +/- 50 % from the ideal speed difference calculated on the basis of maximum and minimum speeds divided by the number of steps.

Max speed of the fan: 400 rpm
Min speed of the fan: 200 rpm
Regulator steps: 5
Ideal speed difference = \(\frac{400}{5} = 80\) rpm

EXPERIMENTAL STUDY

Fans from different manufacturers are tested on a standard regulator with combinations of 2.2, 1.0 and 3.1 µF.

Now,
- At speed 1 = 2.2 µF
- At speed 2 = 3.1 µF
- At speed 3 = 4.1 µF
- At speed 4 = 5.3 µF
- At speed 5 = no capacitor

For,
- Fan A, maximum RPM = 320
- Fan B, maximum RPM = 422
- Fan C, maximum RPM = 380

Position 4

At this position, capacitor in the circuit 3.1 + 2.2 = 5.3 µF.

Position 5

At this position there is no capacitor in the circuit and the fan moves at the full rated speed.

DATA SHEETS

Type A fan tested on a standard regulator
Case 1: Supply voltage = 220V

<table>
<thead>
<tr>
<th>Regulator Number</th>
<th>Voltage V</th>
<th>Current</th>
<th>Power Watts</th>
<th>Voltage V</th>
<th>Speed RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>81</td>
<td>0.100</td>
<td>0.81</td>
<td>200.000</td>
<td>132</td>
</tr>
<tr>
<td>2</td>
<td>112</td>
<td>0.150</td>
<td>16.80</td>
<td>181.000</td>
<td>187</td>
</tr>
<tr>
<td>3</td>
<td>131</td>
<td>0.180</td>
<td>23.58</td>
<td>164.000</td>
<td>219</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
<td>0.210</td>
<td>31.50</td>
<td>143.000</td>
<td>247</td>
</tr>
<tr>
<td>5</td>
<td>220</td>
<td>0.250</td>
<td>55.00</td>
<td>0.044</td>
<td>315</td>
</tr>
</tbody>
</table>

Type A fan tested on a standard regulator
Case 2: Supply voltage = 230V

<table>
<thead>
<tr>
<th>Regulator Number</th>
<th>Voltage V</th>
<th>Current</th>
<th>Power Watts</th>
<th>Voltage V</th>
<th>Speed RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>83</td>
<td>0.110</td>
<td>9.13</td>
<td>208.000</td>
<td>134</td>
</tr>
<tr>
<td>2</td>
<td>116</td>
<td>0.160</td>
<td>18.56</td>
<td>190.200</td>
<td>194</td>
</tr>
<tr>
<td>3</td>
<td>137</td>
<td>0.190</td>
<td>26.03</td>
<td>171.200</td>
<td>228</td>
</tr>
<tr>
<td>4</td>
<td>155</td>
<td>0.220</td>
<td>34.10</td>
<td>150.000</td>
<td>260</td>
</tr>
<tr>
<td>5</td>
<td>230</td>
<td>0.260</td>
<td>59.80</td>
<td>0.044</td>
<td>318</td>
</tr>
</tbody>
</table>

Type A fan tested on a standard regulator
Case 3: Supply voltage = 240V

<table>
<thead>
<tr>
<th>Regulator Number</th>
<th>Voltage V</th>
<th>Current</th>
<th>Power Watts</th>
<th>Voltage V</th>
<th>Speed RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>81</td>
<td>0.100</td>
<td>0.81</td>
<td>200.000</td>
<td>132</td>
</tr>
<tr>
<td>2</td>
<td>112</td>
<td>0.150</td>
<td>16.80</td>
<td>181.000</td>
<td>187</td>
</tr>
<tr>
<td>3</td>
<td>131</td>
<td>0.180</td>
<td>23.58</td>
<td>164.000</td>
<td>219</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
<td>0.210</td>
<td>31.50</td>
<td>143.000</td>
<td>247</td>
</tr>
<tr>
<td>5</td>
<td>220</td>
<td>0.250</td>
<td>55.00</td>
<td>0.044</td>
<td>315</td>
</tr>
</tbody>
</table>
DEKI CAPACITOR GUIDE
Fan Regulators

Type B fan tested on a standard regulator
Case 1: Supply voltage = 220V

<table>
<thead>
<tr>
<th>Regulator Number</th>
<th>Voltage V_e</th>
<th>Current I_e</th>
<th>Power P_e</th>
<th>Voltage V_c</th>
<th>Speed RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76</td>
<td>0.110</td>
<td>8.36</td>
<td>219.40</td>
<td>101.1</td>
</tr>
<tr>
<td>2</td>
<td>111</td>
<td>0.170</td>
<td>18.87</td>
<td>201.40</td>
<td>155.0</td>
</tr>
<tr>
<td>3</td>
<td>134</td>
<td>0.210</td>
<td>28.14</td>
<td>187.40</td>
<td>210.0</td>
</tr>
<tr>
<td>4</td>
<td>154</td>
<td>0.240</td>
<td>36.96</td>
<td>163.90</td>
<td>295.0</td>
</tr>
<tr>
<td>5</td>
<td>219</td>
<td>0.290</td>
<td>63.51</td>
<td>0.06</td>
<td>420.0</td>
</tr>
</tbody>
</table>

Type A fan tested on a standard regulator
Case 3: Supply voltage = 240V

<table>
<thead>
<tr>
<th>Regulator Number</th>
<th>Voltage V_e</th>
<th>Current I_e</th>
<th>Power P_e</th>
<th>Voltage V_c</th>
<th>Speed RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>83</td>
<td>0.130</td>
<td>10.79</td>
<td>235.000</td>
<td>114</td>
</tr>
<tr>
<td>2</td>
<td>121</td>
<td>0.190</td>
<td>22.99</td>
<td>218.700</td>
<td>176</td>
</tr>
<tr>
<td>3</td>
<td>144</td>
<td>0.230</td>
<td>33.12</td>
<td>198.700</td>
<td>265</td>
</tr>
<tr>
<td>4</td>
<td>166</td>
<td>0.250</td>
<td>41.50</td>
<td>170.300</td>
<td>342</td>
</tr>
<tr>
<td>5</td>
<td>238</td>
<td>0.310</td>
<td>73.78</td>
<td>0.068</td>
<td>426</td>
</tr>
</tbody>
</table>

Type C fan tested on a standard regulator
Case 1: Supply voltage = 220V

<table>
<thead>
<tr>
<th>Regulator Number</th>
<th>Voltage V_e</th>
<th>Current I_e</th>
<th>Power P_e</th>
<th>Voltage V_c</th>
<th>Speed RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>82</td>
<td>0.120</td>
<td>9.48</td>
<td>221.300</td>
<td>83.7</td>
</tr>
<tr>
<td>2</td>
<td>109</td>
<td>0.160</td>
<td>17.44</td>
<td>194.500</td>
<td>117.1</td>
</tr>
<tr>
<td>3</td>
<td>131</td>
<td>0.200</td>
<td>26.20</td>
<td>179.600</td>
<td>163.0</td>
</tr>
<tr>
<td>4</td>
<td>149</td>
<td>0.220</td>
<td>32.78</td>
<td>155.800</td>
<td>276.0</td>
</tr>
<tr>
<td>5</td>
<td>219</td>
<td>0.270</td>
<td>59.13</td>
<td>0.056</td>
<td>380.0</td>
</tr>
</tbody>
</table>

Type C fan tested on a standard regulator
Case 3: Supply voltage = 240V

ANALYSIS AND CONCLUSION

Why cannot a common or general fan regulator be designed?

Different types of fans have been tested using a general regulator. After analysing all data it is observed that with one standard fan regulator we can achieve speed regulation approximating a linearity pattern but cannot satisfy the ISI standards for different fans.

Full rated RPMs of different fans are different due to electrical parameters such as number of turns in the winding, number of poles, impedance, air gap between stator and rotor, etc., that vary from one manufacturer to the other. Therefore, a common, general fan regulator is unable to regulate the speed within the ISI limits.

SELECTION OF CAPACITOR FOR A GOOD FAN REGULATOR

In a capacitive type fan regulator, the capacitor is the vital element. In order to design a reliable, accurate, durable and effective fan regulator, all the electrical parameters of the capacitor must be selected properly.

Basically, a fan regulator is a low power AC application for which the following parameters of the capacitor determine its working life:

1) Tan δ
at working frequency.

2) Power handling capability.

Tan δ (Tangent of Loss Angle): The dissipation factor or tangent of loss angle is the power loss of the capacitor divided by the reactive power of the capacitor at a sinusoidal voltage of specified frequency.

$$\text{Tan } \delta = \frac{\omega CR}{2 \times \pi \times f \times C \times R}$$

where, $R = $ series resistance, $f = $ supply frequency, and $S = $ capacitance

NOTE: The measuring method shall be such that the error does not exceed 10% of the specified value or 0.0001, whichever is higher.

EQUIVALENT SERIES RESISTANCE (ESR)
The ESR is the resistive part of the equivalent series circuit and is temperature and frequency dependent. The ESR can be calculated from the dissipation factor (Tan δ) as follows:

$$\text{ESR} = \frac{\text{Tan } \delta}{\omega S}$$

POWER DISSIPATION

The power dissipated by a capacitor is a function of the voltage across or the current (I) flowing through the equivalent series resistance ESR.
DEKI CAPACITOR GUIDE

Fan Regulators

DEKI CAPACITOR GUIDE

F a n R e g u l a t o r s

ANALYSIS AND CONCLUSION

Why cannot a common or general fan regulator be designed?

Different types of fans have been tested using a general regulator. After analysing all data it is observed that with one standard fan regulator we can achieve speed regulation approximating a linearity pattern but cannot satisfy the ISI standards for different fans.

Full rated RPMs of different fans are different due to electrical parameters such as number of turns in the winding, number of poles, impedance, air gap between stator and rotor, etc., that vary from one manufacturer to the other. Therefore, a common, general fan regulator is unable to regulate the speed within the ISI limits.

SELECTION OF CAPACITOR FOR A GOOD FAN REGULATOR

In a capacitive type fan regulator, the capacitor is the vital element. In order to design a reliable, accurate, durable and effective fan regulator, all the electrical parameters of the capacitor must be selected properly.

Basically, a fan regulator is a low power AC application for which the following parameters of the capacitor determine its working life:

1) $\tan \delta$ at working frequency.
2) Power handling capability.

$\tan \delta$ (Tangent of Loss Angle): The dissipation factor or tangent of loss angle is the power loss of the capacitor divided by the reactive power of the capacitor at a sinusoidal voltage of specified frequency.

Equivalent circuit of capacitor

$$\tan \delta = \omega CR = \frac{2 \times \pi \times f \times C \times R_s}{S}$$

where, R_s = series resistance, f = supply frequency, and C = capacitance

NOTE: The measuring method shall be such that the error does not exceed 10% of the specified value or 0.0001, whichever is higher.

EQUIVALENT SERIES RESISTANCE (ESR)

The ESR is the resistive part of the equivalent series circuit and is temperature and frequency dependent. The ESR can be calculated from the dissipation factor ($\tan \delta$) as follows:

$$ESR = \frac{\tan \delta}{\omega C}$$

POWER DISSIPATION

The power dissipated by a capacitor is a function of the voltage across or the current (I) flowing through the equivalent series resistance ESR.
DEKI CAPACITOR GUIDE

Fan Regulators

For AC applications at high frequency, internal heating of the capacitor may follow with a possible risk of smoke or fire. This is caused by the heating effect of the current flowing through the internal resistance of the capacitor.

The following formula is used to calculate the maximum power dissipated by the capacitor:

\[
P_{\text{max}} = \sum_{i=1}^{N} V_{\text{rms},i}^2 \times 2 \pi f_i \times C \times \tan \delta_{\text{max}}(f_i)
\]

where, \(P_{\text{max}}\) = max dissipated power in watts, \(V_{\text{rms},i}\) = RMS voltage of the ith harmonic in volts, \(I_{\text{rms},i}\) = RMS current of the ith harmonic in amperes, \(f_i\) = frequency of the ith harmonic in hertz, \(C\) = capacitance in farads, \(\delta_{\text{max}}(f_i)\) = maximum dissipation factor corresponding to the frequency of the ith harmonic, and, \(N\) = number of significant harmonics.

In sinusoidal waveform we take \(N = 1\)

Now, \(\Delta T_{\text{in}}\) = allowed capacitor overtemperature in °C.

\(\Delta T_{\text{in}} = T_{\text{a}} - T_{\text{s}}\)

where, \(T_{\text{a}}\) = maximum ambient temperature surrounding the capacitor, or, hottest contact point (i.e., tracks), whichever is higher, in the worst operation conditions in °C.

For \(T_s < 40^\circ\ C\)

\(\Delta T_{\text{in}} = 40^\circ\ C\) for film-foil polypropylene capacitors (PP), polypropylene capacitors with double sided metallised film electrodes (MMPP), and metallised polyester film capacitors (MPET).

\(\Delta T_{\text{in}} = 20^\circ\ C\) for polypropylene capacitors with single sided metallised film electrodes (MPP).

For \(40^\circ\ C < T_s < 100^\circ\ C, \Delta T_{\text{in}} = 10^\circ\ C\)

\(\Delta T_{\text{in}} = 40 [1-0.0166(T_s -40)]\) for PP, MMPP and MPET

\(\Delta T_{\text{in}} = 20 [1-0.0166(T_s -40)]\) for MPP

For \(100^\circ\ C < T_s < 105^\circ\ C\)

\(\Delta T_{\text{in}} = 0^\circ\ C\)

The formula used to calculate the maximum power that may be dissipated by the capacitor is:

\[
P_{\text{max}} = \Delta T_{\text{in}} / R_{\text{th}}
\]

where, \(P_{\text{max}}\) = maximum power that may be dissipated by the capacitor.

\(R_{\text{th}}\) = thermal resistance of the capacitor in °C / watts, and, \(\Delta T_{\text{in}}\) = allowed capacitor overtemperature in °C.

It must be: \(P_{\text{max}} < P_{\text{in}}\)

\[
\Delta T_{\text{in}} = (\Delta T_{\text{in}} / \tan \delta_s) \times \tan \delta_{\text{max}}
\]

where, \(\Delta T_{\text{in}}\) = capacitor overtemperature calculated using the maximum tan \(\delta\) value at the working frequency, \(\Delta T_{\text{in}} = T_{\text{a}} - T_{\text{s}}\), tan \(\delta_s\) = dissipation factor of the tested capacitor measured at the working frequency and at the temperature reached by the capacitor under test, and, tan \(\delta_{\text{max}}\) = maximum dissipation factor at the working frequency of the capacitor under test.

CONCLUSION

Both metallised polyester and metallised polypropylene capacitors fulfil the requirements of our application.

However, metallised polyester capacitor scores over metallised polypropylene because its dielectric constant \(\epsilon\) is 3.2 as compared to 2.2 for metallised polypropylene and better price.

So, for the same capacitance value MPET is smaller in area as compared to MPP because the capacitance value is given by the formula:

\[
C = (\epsilon \times A) / d
\]

Though MPP has better dielectric strength, MPET is more popular in fan regulators because of smaller size and lower price.

However, if a bigger size can be accommodated then MPP is the ideal choice.

DEKI RANGE FOR FAN REGULATORS

1) Metallised polyester film capacitors.
2) Metallised polypropylene film capacitors.

Available in, both, epoxy coated and capacitor pack type.
METALLISED POLYESTER FILM CAPACITORS

Economic type

MAIN APPLICATION: Mainly used in switch type fan regulators

CONSTRUCTION (DIP TYPE): Low inductive cell of metallised polyester film coated with flame retardant grade epoxy powder

CLIMATIC CATEGORY: 40/85/21

CAPACITANCE VALUE, RATED VOLTAGE (DC): Refer dimension chart

CAPACITANCE TOLERANCE: ±5%, ±10%

VOLTAGE PROOF: 1.6×Ur for 2 seconds between the terminals.

TAN δ (DISSIPATION FACTOR): 0.8% (max) at 1 kHz

INSULATION RESISTANCE

Minimum insulation resistance R_{ir} measured at 100 V DC for 1 minute. Or, time constant $T = C_0 \times R_{ir} > 2500$ s at 25°C, relative humidity ≤70%

LIFE TEST CONDITIONS

a) **Endurance Test:** Loaded at 1.1 times of rated voltage at 70°C for 500 hours.

After the test:

$\Delta R/C: \leq 5\%$ of initial value

$\Delta \tan \delta: \leq 0.004$ of initial value

Insulation resistance: ≥50% of the value specified in data sheet

b) **Switching test:** > 20,000 cycles of 4 step / 5 step switch type fan regulator

Input supply: 240 V AC, Load: Fan Motor

After the test:

$\Delta R/C: \leq 5\%$ of initial value

$\Delta \tan \delta: \leq 0.004$ of initial value

Insulation resistance: ≥50% of the value specified in data sheet
c) **Lot to lot testing:** Loaded at 450 V AC at ambient temperature for 2 hours

After the test:

$\Delta R/C: \leq 10\%$ of initial value

$\Delta \tan \delta: \leq 0.004$ of initial value

Dimension Chart

<table>
<thead>
<tr>
<th>Rated Voltage</th>
<th>Rated cap. (µfd)</th>
<th>W ±0.5</th>
<th>H ±0.5</th>
<th>L ±0.5</th>
<th>d ±0.5</th>
<th>S ±0.5</th>
<th>Ordering code</th>
<th>Packing units Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 V AC</td>
<td>1</td>
<td>6</td>
<td>14</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>57 105 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>7</td>
<td>15</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>57 125 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>7</td>
<td>16</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>57 155 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8</td>
<td>17</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>57 205 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>8</td>
<td>18</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>57 225 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>7.5</td>
<td>21</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>57 245 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>9</td>
<td>19</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>57 255 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10</td>
<td>19</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>57 305 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>8.5</td>
<td>22.5</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>57 335 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>9</td>
<td>23</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>57 365 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td>11</td>
<td>20</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>57 375 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>10</td>
<td>24</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>57 435 + 02 *^</td>
<td>250</td>
</tr>
</tbody>
</table>
DEKI CAPACITOR GUIDE

Fan Regulators

METALLISED POLYESTER FILM CAPACITORS
Switch type

MAIN APPLICATION: Mainly used in switch type fan regulators

CONSTRUCTION (DIP TYPE): Low inductive cell of metallised polyester film coated with flame retardant grade epoxy powder

CLIMATIC CATEGORY: 40/85/21

CAPACITANCE VALUE, RATED VOLTAGE (DC): Refer dimension chart

CAPACITANCE TOLERANCE: ±5%, ±10%

VOLTAGE PROOF: 1.6*Ur for 2 seconds between the terminals.

TAN δ (DISSIPATION FACTOR): 0.8% (max) at 1 kHz

INSULATION RESISTANCE
Minimum insulation resistance R_{in} measured at 100 V DC for 1 minute.
Or, time constant $T = C \times R > 2500$ s at 25° C, relative humidity ≤70%

LIFE TEST CONDITIONS
a) Endurance Test: Loaded at 1.1 times of rated voltage at 70° C for 500 hours.
After the test:

Δc/c: ≤ 5% of initial value

Change in Tan δ: ≤ 0.004 of initial value

Insulation resistance: ≥ 50% of the value specified in data sheet

b) Switching test: > 20,000 cycles of 4 step / 5 step switch type fan regulator

Input supply: 240 V AC, Load: Fan Motor

After the test:

Δc/c: ≤ 5% of initial value

Change in Tan δ: ≤ 0.004 of initial value

Insulation resistance: ≥ 50% of the value specified in data sheet

c) Lot to lot testing: Loaded at 450 V AC at ambient temperature for 2 hours

After the test:

Δc/c: ≤ 10% of initial value

Change in Tan δ: ≤ 0.004 of initial value

Dimension Chart

<table>
<thead>
<tr>
<th>Rated Voltage</th>
<th>Rated cap. (µfd)</th>
<th>W ±0.5</th>
<th>H ±0.5</th>
<th>L ±0.5</th>
<th>d ±0.5</th>
<th>S ±0.5</th>
<th>Ordering code</th>
<th>Packing units</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 V DC</td>
<td>1.0</td>
<td>6.2</td>
<td>14.0</td>
<td>27.0</td>
<td>0.8</td>
<td>22.5</td>
<td>02 105 + 2E1B</td>
<td>400</td>
</tr>
<tr>
<td>1.8</td>
<td>8.2</td>
<td>17.3</td>
<td>27.0</td>
<td>0.8</td>
<td>22.5</td>
<td>02 185 + 2E1B</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>8.5</td>
<td>19.0</td>
<td>27.0</td>
<td>0.8</td>
<td>22.5</td>
<td>02 225 + 2E1B</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>11.4</td>
<td>20.4</td>
<td>27.0</td>
<td>0.8</td>
<td>22.5</td>
<td>02 335 + 2E1B</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>250 V AC</td>
<td>1.0</td>
<td>6.1</td>
<td>13.7</td>
<td>31.0</td>
<td>0.8</td>
<td>27.5</td>
<td>46 105 + SW1A</td>
<td>400</td>
</tr>
<tr>
<td>1.2</td>
<td>6.5</td>
<td>15.0</td>
<td>31.0</td>
<td>0.8</td>
<td>27.5</td>
<td>46 125 + SW1A</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>7.0</td>
<td>16.0</td>
<td>31.0</td>
<td>0.8</td>
<td>27.5</td>
<td>46 155 + SW1A</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>6.8</td>
<td>20.2</td>
<td>31.0</td>
<td>0.8</td>
<td>27.5</td>
<td>46 225 + SW1A</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>8.1</td>
<td>22.0</td>
<td>31.0</td>
<td>0.8</td>
<td>27.5</td>
<td>46 255 + SW1A</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>8.2</td>
<td>22.1</td>
<td>31.0</td>
<td>0.8</td>
<td>27.5</td>
<td>46 275 + SW1A</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>9.2</td>
<td>22.6</td>
<td>31.0</td>
<td>0.8</td>
<td>27.5</td>
<td>46 335 + SW1A</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>9.4</td>
<td>23.1</td>
<td>31.0</td>
<td>0.8</td>
<td>27.5</td>
<td>46 355 + SW1A</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>10.0</td>
<td>23.5</td>
<td>31.0</td>
<td>0.8</td>
<td>27.5</td>
<td>46 375 + SW1A</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>10.1</td>
<td>23.8</td>
<td>31.0</td>
<td>0.8</td>
<td>27.5</td>
<td>46 395 + SW1A</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>11.0</td>
<td>24.5</td>
<td>31.0</td>
<td>0.8</td>
<td>27.5</td>
<td>46 435 + SW1A</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>250 V AC</td>
<td>2.2</td>
<td>9.0</td>
<td>18.0</td>
<td>31.0</td>
<td>0.8</td>
<td>27.5</td>
<td>46 225+SW1B</td>
<td>250</td>
</tr>
<tr>
<td>2.5</td>
<td>10.0</td>
<td>18.0</td>
<td>31.0</td>
<td>0.8</td>
<td>27.5</td>
<td>46 255+SW1B</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>10.5</td>
<td>19.0</td>
<td>31.0</td>
<td>0.8</td>
<td>27.5</td>
<td>46 275+SW1B</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>11.0</td>
<td>20.0</td>
<td>31.0</td>
<td>0.8</td>
<td>27.5</td>
<td>46 335+SW1B</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>11.0</td>
<td>21.0</td>
<td>31.0</td>
<td>0.8</td>
<td>27.5</td>
<td>46 355+SW1B</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>13.0</td>
<td>20.0</td>
<td>31.0</td>
<td>0.8</td>
<td>27.5</td>
<td>46 375+SW1B</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>13.0</td>
<td>20.0</td>
<td>31.0</td>
<td>0.8</td>
<td>27.5</td>
<td>46 395+SW1B</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>13.0</td>
<td>22.0</td>
<td>31.0</td>
<td>0.8</td>
<td>27.5</td>
<td>46 435+SW1B</td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>
METALLISED POLYESTER FILM CAPACITORS

Socket type

MAIN APPLICATION: Mainly used in switch type fan regulators

CONSTRUCTION (DIP TYPE): Low inductive cell of metallised polyester film coated with flame retardant grade epoxy powder

CLIMATIC CATEGORY: 40/85/21

CAPACITANCE VALUE, RATED VOLTAGE (DC): Refer dimension chart

CAPACITANCE TOLERANCE: ±5%, ±10%

VOLTAGE PROOF: 1.6*Ur for 2 seconds between the terminals.

TAN δ (DISSIPATION FACTOR): 0.8% (max) at 1 kHz

INSULATION RESISTANCE
Minimum insulation resistance Rₘ measured at 100 V DC for 1 minute.
Or, time constant T = Cₙ × Rₘ > 2500 s at 25°C, relative humidity ≤ 70%

LIFE TEST CONDITIONS
a) Endurance Test: Loaded at 1.1 times of rated voltage at 70°C for 500 hours.
 After the test:
 ∆C/C: ± 5% of initial value
 Change in Tan δ: ≤ 0.004 of initial value
 Insulation resistance: ≥ 50% of the value specified in data sheet

b) Switching test: > 20,000 cycles of 4 step / 5 step switch type fan regulator
 Input supply: 240 VAC Load: Fan Motor
 After the test:
 ∆C/C: ± 5% of initial value
 Change in Tan δ: ≤ 0.004 of initial value
 Insulation resistance: ≥ 50% of the value specified in data sheet

c) Lot to lot testing: Loaded at 450 V AC at ambient temperature for 2 hours
 After the test:
 ∆C/C: ±10% of initial value
 Change in Tan δ: ≤ 0.004 of initial value

Dimension Chart

<table>
<thead>
<tr>
<th>Rated Voltage</th>
<th>Rated cap. (μfd)</th>
<th>Maximum Dimensions (mm)</th>
<th>Ordering code</th>
<th>Packing units Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 V AC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>6.2</td>
<td>16.0</td>
<td>0.8</td>
<td>27.5</td>
</tr>
<tr>
<td>MPET Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>8.0</td>
<td>18.0</td>
<td>0.8</td>
<td>27.5</td>
</tr>
<tr>
<td>1.5</td>
<td>10.0</td>
<td>18.0</td>
<td>0.8</td>
<td>27.5</td>
</tr>
<tr>
<td>2.2</td>
<td>10.3</td>
<td>19.6</td>
<td>0.8</td>
<td>27.5</td>
</tr>
<tr>
<td>2.4</td>
<td>11.3</td>
<td>20.8</td>
<td>0.8</td>
<td>27.5</td>
</tr>
<tr>
<td>2.7</td>
<td>11.8</td>
<td>21.5</td>
<td>0.8</td>
<td>27.5</td>
</tr>
<tr>
<td>3.3</td>
<td>13.7</td>
<td>21.2</td>
<td>0.8</td>
<td>27.5</td>
</tr>
<tr>
<td>3.5</td>
<td>13.8</td>
<td>22.7</td>
<td>0.8</td>
<td>27.5</td>
</tr>
</tbody>
</table>

EPOXY COATED TYPE:

CAPACITOR PACK
2 Capacitor pack (MPP): Capacitance Value: 2.2, 3.1 μF
Rated Voltage: 220 V AC, Tolerance: ±10%

3 Capacitor pack (MPP): Capacitance Value: 1.0, 2.2, 3.1 μF
Rated Voltage: 220 V AC, Tolerance: ±10%
METALLISED POLYPROPYLENE FILM CAPACITORS

Socket type

MAIN APPLICATION: Mainly used in switch type fan regulators

CONSTRUCTION (DIP TYPE): Low inductive cell of metallised polyester film coated with flame retardant grade epoxy powder

CLIMATIC CATEGORY: 40/85/21

CAPACITANCE VALUE, RATED VOLTAGE (DC): Refer dimension chart

CAPACITANCE TOLERANCE: ±5%, ±10%

VOLTAGE PROOF: 1.6*Ur for 2 seconds between the terminals.

TAN δ (DISSIPATION FACTOR): 0.1% (max) at 1 kHz

INSULATION RESISTANCE
Minimum insulation resistance R_50 measured at 100 V DC for 1 minute.
Or, time constant T = C × R > 2500 s at 25° C, relative humidity ≤70%

LIFE TEST CONDITIONS
a) Endurance Test: Loaded at 1.1 times of rated voltage at 70° C for 500 hours.
After the test:
Δc/c: ≤ 5% of initial value
Change in TAN δ: ≤ 0.004 of initial value
Insulation resistance: ≥ 50% of the value specified in data sheet

b) Switching test: > 20,000 cycles of 4 step / 5 step switch type fan regulator
Input supply: 240 VAC Load: Fan Motor
After the test:
Δc/c: ≤ 5% of initial value
Change in TAN δ: ≤ 0.004 of initial value
Insulation resistance: ≥ 50% of the value specified in data sheet

c) Lot to lot testing: Loaded at 540 V AC at ambient temperature for 2 hours
After the test:
Δc/c: ≤ 10% of initial value
Change in TAN δ: ≤ 0.004 of initial value

Dimension Chart

<table>
<thead>
<tr>
<th>Rated Voltage</th>
<th>Rated cap. (µfd)</th>
<th>Maximum Dimensions (mm)</th>
<th>Ordering code</th>
<th>Packing units Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W ±0.5</td>
<td>H ±0.5</td>
<td>L ±0.5</td>
<td>d ±0.5</td>
</tr>
<tr>
<td>250 V AC</td>
<td>1.0</td>
<td>8.0</td>
<td>17.0</td>
<td>31.0</td>
</tr>
<tr>
<td>V AC</td>
<td>1.5</td>
<td>9.0</td>
<td>18.0</td>
<td>31.0</td>
</tr>
<tr>
<td>MPP</td>
<td>1.6</td>
<td>10.0</td>
<td>19.0</td>
<td>31.0</td>
</tr>
<tr>
<td>2.2</td>
<td>12.0</td>
<td>20.0</td>
<td>31.0</td>
<td>0.8</td>
</tr>
<tr>
<td>2.5</td>
<td>13.0</td>
<td>21.0</td>
<td>31.0</td>
<td>0.8</td>
</tr>
<tr>
<td>2.7</td>
<td>14.0</td>
<td>22.0</td>
<td>31.0</td>
<td>0.8</td>
</tr>
<tr>
<td>3.2</td>
<td>15.0</td>
<td>23.0</td>
<td>31.0</td>
<td>0.8</td>
</tr>
<tr>
<td>3.3</td>
<td>15.0</td>
<td>23.0</td>
<td>31.0</td>
<td>0.8</td>
</tr>
<tr>
<td>250 V AC</td>
<td>2.5</td>
<td>8.0</td>
<td>23.0</td>
<td>31.0</td>
</tr>
<tr>
<td>V AC</td>
<td>4.2</td>
<td>13</td>
<td>24.0</td>
<td>31.0</td>
</tr>
</tbody>
</table>

EPOXY COATED TYPE:

CAPACITOR PACK
2 Capacitor pack (MPP): Capacitance Value: 2.2, 3.1 µF
Rated Voltage: 220 V AC, Tolerance: +10%

3 Capacitor pack (MPP): Capacitance Value: 1.0, 2.2, 3.1 µF
Rated Voltage: 220 V AC, Tolerance: +10%
METALLISED POLYESTER FILM CAPACITORS
Ultima safety type

MAIN APPLICATION: Mainly used in switch/socket type fan regulators where no fire/explosion is allowed

CONSTRUCTION (DIP TYPE): Low inductive cell of metallised polyester film coated with flame retardant grade epoxy powder

CLIMATIC CATEGORY: 40/85/21

CAPACITANCE VALUE, RATED VOLTAGE (DC): Refer dimension chart

CAPACITANCE TOLERANCE: ±5%, ±10%

VOLTAGE PROOF: 1.6*Ur for 2 seconds between the terminals.

TAN δ (DISSIPATION FACTOR): 0.8% (max) at 1 kHz

INSULATION RESISTANCE
Minimum insulation resistance R_{is} measured at 100 V DC for 1 minute.
Or, time constant $T = C \times R_{is} > 2500 \text{ s at } 25^\circ \text{C}, \text{relative humidity} \leq 70%$

LIFE TEST CONDITIONS
a) Endurance Test: Loaded at 1.1 times of rated voltage at 70° C for 500 hours.
 After the test: $\Delta I/C: \leq 10\% \text{ of initial value}$
 Change in Tan δ: $\leq 0.004 \text{ of initial value}$
 Insulation resistance: $\geq 50\% \text{ of the value specified in data sheet}$

b) Switching test: > 20,000 cycles of 4 step / 5 step switch type fan regulator
 Input supply: 240 V AC Load: Fan Motor
 After the test: $\Delta I/C: \leq 5\% \text{ of initial value}$
 Change in Tan δ: $\leq 0.004 \text{ of initial value}$
 Insulation resistance: $\geq 50\% \text{ of the value specified in data sheet}$

c) Lot to lot testing: Loaded at 540 V AC at ambient temperature for 2 hours
 After the test: $\Delta I/C: \leq 10\% \text{ of initial value}$
 Change in Tan δ: $\leq 0.004 \text{ of initial value}$

Dimension Chart

<table>
<thead>
<tr>
<th>Rated Voltage</th>
<th>Rated cap. (μfd)</th>
<th>W ±0.5</th>
<th>H ±0.5</th>
<th>L ±0.5</th>
<th>d ±0.5</th>
<th>S ±0.5</th>
<th>Ordering code</th>
<th>Packing units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V AC</td>
<td>250</td>
<td>1.5</td>
<td>8.5</td>
<td>14.5</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>86 155 + 02 *^</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.6</td>
<td>9</td>
<td>15</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>86 165 + 02 *^</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>7.5</td>
<td>21</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>86 205 + 02 *^</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2</td>
<td>8.5</td>
<td>19</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>86 225 + 02 *^</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5</td>
<td>11</td>
<td>17</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>86 255 + 02 *^</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.6</td>
<td>11</td>
<td>17</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>86 265 + 02 *^</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.7</td>
<td>10</td>
<td>19</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>86 275 + 02 *^</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2</td>
<td>11</td>
<td>19</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>86 325 + 02 *^</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.3</td>
<td>11</td>
<td>20</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>86 335 + 02 *^</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>13</td>
<td>21.5</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>86 405 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>12</td>
<td>22</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>86 435 + 02 *^</td>
<td>250</td>
</tr>
</tbody>
</table>
METALLISED POLYPROPYLENE FILM CAPACITORS
Ultima safety type

MAIN APPLICATION: Mainly used in switch/socket type fan regulators where no fire/explosion is allowed

CONSTRUCTION (DIP TYPE): Low inductive cell of metallised polypropylene film coated with flame retardant grade epoxy powder

CLIMATIC CATEGORY: 40/85/21

CAPACITANCE VALUE, RATED VOLTAGE (DC): Refer dimension chart

CAPACITANCE TOLERANCE: ±5%, ±10%

VOLTAGE PROOF: 1.6*Ur for 2 seconds between the terminals.

TAN δ (DISSIPATION FACTOR): 0.1% (max) at 1 kHz

INSULATION RESISTANCE Minimum insulation resistance R_h measured at 100 V DC for 1 minute.
Or, time constant $\tau = C_h \times R_h > 2500$ s at 25° C, relative humidity ≤70%

LIFE TEST CONDITIONS
a) Endurance Test: Loaded at 1.1 times of rated voltage at 70° C for 500 hours.
After the test:
$\Delta c/c: \leq 10\%$ of initial value
Change in $\tan \delta: \leq 0.004$ of initial value
Insulation resistance: ≥ 50% of the value specified in data sheet

b) Switching test: > 20,000 cycles of 4 step / 5 step switch type fan regulator
Input supply: 240 V AC Load: Fan Motor
After the test:
$\Delta c/c: \leq 5\%$ of initial value
Change in $\tan \delta: \leq 0.004$ of initial value
Insulation resistance: ≥ 50% of the value specified in data sheet

c) Lot to lot testing: Loaded at 540 V AC at ambient temperature for 2 hours
After the test:
$\Delta c/c: \leq 10\%$ of initial value
Change in $\tan \delta: \leq 0.004$ of initial value

Dimension Chart

<table>
<thead>
<tr>
<th>Rated Voltage</th>
<th>Rated cap. (µfd)</th>
<th>Maximum Dimensions (mm)</th>
<th>Ordering code</th>
<th>Packing units</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 V AC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>1</td>
<td>W ±0.5</td>
<td>74 105 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>H ±0.5</td>
<td>74 225 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>L ±0.5</td>
<td>74 255 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>3.1</td>
<td>d ±0.5</td>
<td>74 315 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>S ±0.5</td>
<td>74 335 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>W ±0.5</td>
<td>44 225 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>H ±0.5</td>
<td>44 335 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>L ±0.5</td>
<td>84 335 + 02 *^</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>d ±0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>S ±0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MAIN APPLICATION: Mainly used in switch/socket type fan regulators where no fire/explosion is allowed

CONSTRUCTION (DIP TYPE): Low inductive cell of metallised polypropylene film coated with flame retardant grade epoxy powder

CLIMATIC CATEGORY: 40/85/21

CAPACITANCE VALUE, RATED VOLTAGE (DC): Refer dimension chart

CAPACITANCE TOLERANCE: ±5%, ±10%

VOLTAGE PROOF: 1.6*Ur for 2 seconds between the terminals.

TAN δ (DISSIPATION FACTOR): 0.5% (max) at 1 kHz

INSULATION RESISTANCE
Minimum insulation resistance R_i measured at 100 V DC for 1 minute.
Or, time constant $T = C_i \times R_{is} > 2500$ s at 25° C, relative humidity ≤70%

LIFE TEST CONDITIONS
a) Endurance Test: Loaded at 1.1 times of rated voltage at 70° C for 500 hours.
After the test:
Δc/c: ≤ 10% of initial value
Change in Tan δ: ≤ 0.004 of initial value
Insulation resistance: ≥ 50% of the value specified in data sheet

b) Switching test: > 20,000 cycles of 4 step / 5 step switch type fan regulator
Input supply: 240 V AC Load: Fan Motor
After the test:
Δc/c: ≤ 5% of initial value
Change in Tan δ: ≤ 0.004 of initial value
Insulation resistance: ≥ 50% of the value specified in data sheet

c) Lot to lot testing: Loaded at 540 V AC at ambient temperature for 2 hours
After the test:
Δc/c: ≤10% of initial value
Change in Tan δ: ≤ 0.004 of initial value

Dimension Chart

<table>
<thead>
<tr>
<th>Rated Voltage</th>
<th>Rated cap. (μfd)</th>
<th>W ±0.5</th>
<th>H ±0.5</th>
<th>L ±0.5</th>
<th>d ±0.5</th>
<th>S ±0.5</th>
<th>Ordering code</th>
<th>Packing units</th>
<th>Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 V AC</td>
<td>1.0</td>
<td>8</td>
<td>17</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>69105 + 02^+</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>2.2</td>
<td>11</td>
<td>22.5</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>69225 + 02^+</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>3.3</td>
<td>12</td>
<td>21</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>69335 + 02^+</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>3.7</td>
<td>13</td>
<td>21</td>
<td>31</td>
<td>0.8</td>
<td>27.5</td>
<td>69375 + 02^+</td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>
In spite of all the improvements that have been made in the manufacturing process and over all quality of the metallised film capacitor, the fan regulator capacitor can still fail during its operational lifetime. The failure can result in the capacitor catching fire (as in the case of dip type capacitors) or the box bursting and metallised film oozing out of the box (in box type capacitors). The photographs below demonstrate these hazards very clearly. While this type of failure is not at all acceptable, customers are still forced to use these capacitors as there is no alternative available.

Until now.

Deki has developed a Flame Proof fan regulator film capacitor. This capacitor does not catch fire nor does it burst in the box in the event of its failure. This new capacitor fails in the open mode thus fulfilling a long standing requirement of customers.

The new Flame Proof film capacitor is available in three metallised polyester series in both, dip and box:
- Economy type
- Switch type
- Socket type

It is also available in metallised polypropylene series in dip and box versions in the socket type.

There is a marginal increase in size (still suitable for accommodation in existing design) and cost which is, however, far outweighed by the safety and peace of mind that the product offers.